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Overlap of isochrone resonances: Chaos and refraction
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We consider the two nonconcentric circles billiard, with the inner circle as a refringent medium, in order to
study the classical dynamics of a light ray. The eccentricity controls the chaotic sea intensity and the refraction
index acts on the integrable portion of the phase space, prompting the appearance and overlapping of isochrone
resonances. Numerical results are presented and disc(iIS4€6.3-651X97)08602-9

PACS numbdps): 42.15-i, 03.20+i, 46.90+s

In classical dynamics, resonances are usually accompauter circle ands is the sine of the reflection angieat every
nied by a chaotic layer and the overlap connecting the layersollision with the outer circle, so that-3<L<3 and
amplify the regions occupied by chaos. On the other hand;-1<S<1. The mapping equations conne@,,«;) with
classical resonance interactions in integrdldeal or globa)]  (6,—1,;_1), Where g is the angle related to the arc length
contexts have been reported during the last few years arld=(6/2m), preserving the ared sina da d6. There are
referred to as reconnection process or overlap of isochron@o kinds of motion, labeled here @sandB. The A motion
resonances. This Corresponds to a topo|ogica| rearrangemé‘r‘ﬂrresponds to those orbits which hit the outer circle after a
of the phase space structures where the island chains inter&&llision with the same circle and tti& motion corresponds
among themselves without introducing chaos. If the chain0 those orbits which attain the inner circle between two
are in phase, the hyperbolic points from different chains coacollisions with the outer one. There is also a particular family
lesce, but most frequently there is a phase shift among the®f orbits which never attain the inner circle, called whisper-
such that during the overlap process, the manifolds chang@d gallery orbits(WGO). The latter are identified as the
their original path and go into other separatrix regions. ThigPrbits of nonzero measure, which never cross the caustics
phenomenon has been reported in studies of the radial twiguxiliary circle of radius + 6).
mappmg in a nonintegrab|e Scenaﬁ_’b]_ The Heon map We consider a monochromatic |Ight ray traveling inside
and nontwist maps have been utilized to ana|yze the recoﬁ.he two circles billiard which tota”y reflects at the outer
nection of dimerized chain§2]. In another approach, a circle, and we assume the ideal limit of total refraction at the
Hamiltonian is derived using the Birkhoff-Gustavson normalinner circle. The reflection law is as follows: incidence angle
form around an elliptic fixed poirt3] to obtain ann-order ~ equals reflection angle, while the refraction obeys Snell's
polynomial in one action variable, yielding up tm€1) law: nising;=nysing,. Taking B, and 3, to be the angles
island chains which may Over|ap in a g|oba||y integrab|ebetween the trajectory and the normal to the inner circle, we
context. Numerical simulations of confined plasma in toka-See that in,>n, then8,<pg, for 0<|g;|< /2. Thus if the
maks exhibit magnetic island chains and integrable overlafajectory goes to a more refringent medium it deviates
is also reporte4]. Stochastic webs are examples of in phasecloser to the normal, and reciprocally, it deviates away from
island chain interactiof5]. Such resonances have also beenthe normal when it goes to a medium with smaller refraction
noticed in beam-beam interaction dynanfi6s The purpose
of this work is to study the classical dynamics of a light
beam, using a billiard model, in the context of a chaos and
isochrone resonance scenario.

Our billiard model is shaped by two eccentric circles in
the (x,y) plane where the outer circle has radRs 1, cor-
responding to an infinite barrier, while the inner circle has
radiusr and it corresponds to a refringent medium with a
variable refraction index, denoted by The intermediate
region between both circles has refraction ingex1. The
inner circle may dislocate horizontally with respect to the
center of the outer circle, and the distanédetween the
centers is defined as the eccentricity. Althowgand 6 may
assume different values, they are limited by the constraint -
(r+ 8)=<1, thus there are two free parametarand § play-
ing the role of perturbation parameters which may introduce
interesting effects into the dynamics. The billiard trajectories
move in broken lines between collisions with the external
boundary. It is convenient to use Birkhoff's area preserving
mapping coordinated (,S) [7] to obtain the mapping equa- FIG. 1. A geometrical scheme of the light beam motion in the
tions, whereL is the 2r-normalized arc length around the billiard model.
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FIG. 2. The effect of varying the refraction indexwith r =0.40 and5=0.05 is analyzed fofa) n=0.0, thecompletely integrable case;
(b) n=1.30, there are tori, an island chain, and two symmetrical chaotic regions with isleds=1.50, three chains are in the regular
region of the phase spac@) n=1.60, theoverlap connecting the three chains has already seeim=1.66, thefirst saddle-center
bifurcation; and(f) the pendulumlike final configuration, after the second saddle-center bifurcation.

index. From Fig. 1, considering an initial conditiday, 6), 6,=2m7—a;—u, 2
we derive the analytical mapping equations for Bhenotion: i
Wi
sinay=r sinB;+ & sinu, (1) U=m—=2B1+2B,— b+ ay 3
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FIG. 3. The effect of varying the eccentricity with{ §)=0.45 andn=1.50 isanalyzed for(a) §=0.01, three thin island chains are
present[for smaller values ofs, the phase space would tend to be like Figg)R (b) §=0.10, we see some structures and the two
symmetrical chaotic region$¢) 6=0.20, chaos has increased; didil 5=0.30, the phase space is almost fully chaotic.

and Hence the mapping given by Eq4) and(2) is well defined
and theA motion is simply given by
1
By=sin"! = singy . (4) ;= ag, (6)
61=00+(7T_2a0). (7)

The incidence angl@; at the refracting circle is obtained by ) ) ]
considering this circle as an infinite reflecting barrier where The dynamical analysis has two aspects. First, we observe

the trajectories would be elastically reflected. This scheméhe effect of varying the refraction indexkeeping constant

yields the known formuld7] r=0.40 and5=0.05, see Figs. (@-2(f); and second, we
observe the effect of the eccentricityfor n=1.50 and (

+ 6)=0.45, see Figs.(@-3(d). In the first case, we see that

for n=0.0, the refringent medium does not exist and the

. 1 .
SinBy = [sinag+ & sinfao = 6o. ®) system is completely integrable. For=1.30, there is a well
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formed thin chaotic layer near the valugd=0.45 and an distinct effects: overlap of isochrone resonances due to the
island chain nealS=0.0; for n=1.50, we see two more variable refraction index and chaos due to the eccentricity;
island chains in the regular portion of the phase space; foeach effect driven by one parameter. It is also possible to
n=1.60, we observe the three chains overlapping in a locadstablish a two dimensional mechanical analogy to this prob-
integrable context; fon=1.66 the first elliptic-saddle point lem, regarding energy and momentum conservation, by con-
bifurcation has already occurred; for=1.70, the second sidering the inner circle as a finite potenthd}, in such a
bifurcation has taken place. For greater valuesothe in-  way that if the particle has energy smaller they, it is
tegrable region between the chaotic layers is similar to theotally reflected. On the other hand, considering nontrapped
pendulum phase space. These plots show that the refractionotion[8], it suffers a deviation like a refraction process, if
index does not introduce chaos, nor does it affect the preseits energy is higher thaw,.

chaotic sea. On the contrary, it acts only on the resonant The occurrence of isochrone integrable resonances over-
integrable region and it is responsible for the resonancekpping in one more approach, the refraction of a light beam,
overlapping. The clear regions, i.65/>0.45, correspond to suggests that we consider it as a more fundamental physical
the WGO tori, which are simply straight lines. In the secondmanifestation, and the transition to chaos in an optical me-
casen=1.50, we initially chooser(, ) =(0.44,0.01), a near dium with different refraction indices, using the two circle
integrable situation, where thin islands may be observedilliard model, may be relevant to some aspects of propaga-
among the tori; for (,6)=(0.35,0.10) we see some struc- tion of light in optical fibers.

tures and chaos; forr (6)=(0.25,0.20) the chaotic sea in-

creased and forr(5)=(0.15,0.30) chaos almost occupies | thank S. P. Carvalho and S. M. O. K. L. da Silva for
the full accessible region. So, we conclude that the eccentridruitful discussions and the scientific Brazilian agencies
ity is responsible for the chaos intensity. Hence we have twé&-APESP, CNPq, and FUNDUNESP for financial support.
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