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Overlap of isochrone resonances: Chaos and refraction

R. Egydio de Carvalho
Instituto de Geocieˆncias e Cieˆncias Exatas, Universidade Extadual Paulista-UNESP, 13500-230 Rio Claro, SP, Brazil

~Received 24 June 1996!

We consider the two nonconcentric circles billiard, with the inner circle as a refringent medium, in order to
study the classical dynamics of a light ray. The eccentricity controls the chaotic sea intensity and the refraction
index acts on the integrable portion of the phase space, prompting the appearance and overlapping of isochrone
resonances. Numerical results are presented and discussed.@S1063-651X~97!08602-9#

PACS number~s!: 42.15.2i, 03.20.1i, 46.90.1s
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In classical dynamics, resonances are usually accom
nied by a chaotic layer and the overlap connecting the lay
amplify the regions occupied by chaos. On the other ha
classical resonance interactions in integrable~local or global!
contexts have been reported during the last few years
referred to as reconnection process or overlap of isochr
resonances. This corresponds to a topological rearrange
of the phase space structures where the island chains int
among themselves without introducing chaos. If the cha
are in phase, the hyperbolic points from different chains c
lesce, but most frequently there is a phase shift among t
such that during the overlap process, the manifolds cha
their original path and go into other separatrix regions. T
phenomenon has been reported in studies of the radial t
mapping in a nonintegrable scenario@1#. The Hénon map
and nontwist maps have been utilized to analyze the rec
nection of dimerized chains@2#. In another approach,
Hamiltonian is derived using the Birkhoff-Gustavson norm
form around an elliptic fixed point@3# to obtain ann-order
polynomial in one action variable, yielding up to (n21)
island chains which may overlap in a globally integrab
context. Numerical simulations of confined plasma in tok
maks exhibit magnetic island chains and integrable ove
is also reported@4#. Stochastic webs are examples of in pha
island chain interaction@5#. Such resonances have also be
noticed in beam-beam interaction dynamics@6#. The purpose
of this work is to study the classical dynamics of a lig
beam, using a billiard model, in the context of a chaos a
isochrone resonance scenario.

Our billiard model is shaped by two eccentric circles
the (x,y) plane where the outer circle has radiusR51, cor-
responding to an infinite barrier, while the inner circle h
radius r and it corresponds to a refringent medium with
variable refraction index, denoted byn. The intermediate
region between both circles has refraction indexn51. The
inner circle may dislocate horizontally with respect to t
center of the outer circle, and the distanced between the
centers is defined as the eccentricity. Althoughr andd may
assume different values, they are limited by the constr
(r1d)<1, thus there are two free parametersn andd play-
ing the role of perturbation parameters which may introdu
interesting effects into the dynamics. The billiard trajector
move in broken lines between collisions with the exter
boundary. It is convenient to use Birkhoff’s area preserv
mapping coordinates (L,S) @7# to obtain the mapping equa
tions, whereL is the 2p-normalized arc length around th
551063-651X/97/55~3!/3781~4!/$10.00
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outer circle andS is the sine of the reflection anglea at every
collision with the outer circle, so that21

2<L< 1
2 and

21<S<1. The mapping equations connect~u i ,a i) with
(u i21,a i21), whereu is the angle related to the arc lengt
L5(u/2p), preserving the area** sina da du. There are
two kinds of motion, labeled here asA andB. TheA motion
corresponds to those orbits which hit the outer circle afte
collision with the same circle and theB motion corresponds
to those orbits which attain the inner circle between tw
collisions with the outer one. There is also a particular fam
of orbits which never attain the inner circle, called whispe
ing gallery orbits~WGO!. The latter are identified as the
orbits of nonzero measure, which never cross the caustics~an
auxiliary circle of radiusr1d).

We consider a monochromatic light ray traveling insid
the two circles billiard which totally reflects at the oute
circle, and we assume the ideal limit of total refraction at t
inner circle. The reflection law is as follows: incidence ang
equals reflection angle, while the refraction obeys Sne
law: n1sinb15n2sinb2. Taking b1 and b2 to be the angles
between the trajectory and the normal to the inner circle,
see that ifn2.n1 thenb2,b1 for 0<ub i u<p/2. Thus if the
trajectory goes to a more refringent medium it deviat
closer to the normal, and reciprocally, it deviates away fro
the normal when it goes to a medium with smaller refracti

FIG. 1. A geometrical scheme of the light beam motion in t
billiard model.
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FIG. 2. The effect of varying the refraction indexn with r50.40 andd50.05 is analyzed for~a! n50.0, thecompletely integrable case
~b! n51.30, there are tori, an island chain, and two symmetrical chaotic regions with islands;~c! n51.50, three chains are in the regula
region of the phase space;~d! n51.60, theoverlap connecting the three chains has already set in;~e! n51.66, thefirst saddle-center
bifurcation; and~f! the pendulumlike final configuration, after the second saddle-center bifurcation.
index. From Fig. 1, considering an initial condition~a0,u0!,
we derive the analytical mapping equations for theB motion:

sina15r sinb11d sinu, ~1!
u152p2a12u, ~2!

with

u5p22b112b22u01a0 ~3!
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FIG. 3. The effect of varying the eccentricity with (r1d)50.45 andn51.50 isanalyzed for~a! d50.01, three thin island chains ar
present@for smaller values ofd, the phase space would tend to be like Fig. 2~a!#; ~b! d50.10, we see some structures and the t
symmetrical chaotic regions;~c! d50.20, chaos has increased; and~d! d50.30, the phase space is almost fully chaotic.
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b25sin21F1n sinb1G . ~4!

The incidence angleb1 at the refracting circle is obtained b
considering this circle as an infinite reflecting barrier whe
the trajectories would be elastically reflected. This sche
yields the known formula@7#

sinb15
1

r
@sina01d sin~a02u0#. ~5!
e
e

Hence the mapping given by Eqs.~1! and~2! is well defined
and theA motion is simply given by

a15a0 , ~6!

u15u01~p22a0!. ~7!

The dynamical analysis has two aspects. First, we obs
the effect of varying the refraction indexn keeping constant
r50.40 andd50.05, see Figs. 2~a!–2~f!; and second, we
observe the effect of the eccentricityd for n51.50 and (r
1d)50.45, see Figs. 3~a!–3~d!. In the first case, we see tha
for n50.0, the refringent medium does not exist and t
system is completely integrable. Forn51.30, there is a well
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formed thin chaotic layer near the valuesuSu50.45 and an
island chain nearS50.0; for n51.50, we see two more
island chains in the regular portion of the phase space;
n51.60, we observe the three chains overlapping in a lo
integrable context; forn51.66 the first elliptic-saddle poin
bifurcation has already occurred; forn51.70, the second
bifurcation has taken place. For greater values ofn, the in-
tegrable region between the chaotic layers is similar to
pendulum phase space. These plots show that the refra
index does not introduce chaos, nor does it affect the pre
chaotic sea. On the contrary, it acts only on the reson
integrable region and it is responsible for the resonan
overlapping. The clear regions, i.e.,uSu.0.45, correspond to
the WGO tori, which are simply straight lines. In the seco
case,n51.50, we initially choose (r ,d)5(0.44,0.01), a nea
integrable situation, where thin islands may be obser
among the tori; for (r ,d)5(0.35,0.10) we see some stru
tures and chaos; for (r ,d)5(0.25,0.20) the chaotic sea in
creased and for (r ,d)5(0.15,0.30) chaos almost occupie
the full accessible region. So, we conclude that the eccen
ity is responsible for the chaos intensity. Hence we have
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distinct effects: overlap of isochrone resonances due to
variable refraction index and chaos due to the eccentric
each effect driven by one parameter. It is also possible
establish a two dimensional mechanical analogy to this pr
lem, regarding energy and momentum conservation, by c
sidering the inner circle as a finite potentialV0 , in such a
way that if the particle has energy smaller thanV0 , it is
totally reflected. On the other hand, considering nontrap
motion @8#, it suffers a deviation like a refraction process,
its energy is higher thanV0 .

The occurrence of isochrone integrable resonances o
lapping in one more approach, the refraction of a light bea
suggests that we consider it as a more fundamental phy
manifestation, and the transition to chaos in an optical m
dium with different refraction indices, using the two circ
billiard model, may be relevant to some aspects of propa
tion of light in optical fibers.
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